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Pattern selection and stability in viscoelastic convection are studied in the framework of amplitude equations
derived in the vicinity of stationary and oscillatory instabilities. The oscillatory instability corresponds to a
Hopf bifurcation with broken translational symmetry. When this instability is the first to appear with increasing
Rayleigh number, such systems may be described by coupled one-dimensional complex Ginzburg-Landau
equations for counterpropagating waves. The coefficients of these equations, as computed from the underlying
Navier-Stokes equations, are such that the selected pattern corresponds to standing waves. The phase dynamics
of these waves is derived and leads to coupled Kuramoto-Sivashinsky equations. Their stability range is also
determined for different typical fluid parameters.@S1063-651X~96!03108-X#

PACS number~s!: 47.20.Ky, 47.54.1r, 47.27.Te, 47.50.1d

I. INTRODUCTION

Convective instabilities of the Rayleigh-Be´nard type have
been known since the turn of the century, and the properties
of the spatial patterns they induce have been extensively
studied, either experimentally or theoretically@1#. However,
it is only during the last decades that a global understanding
of pattern formation in hydrodynamic instabilities has been
achieved thanks to both carefully controlled experiments and
the development of an appropriate theoretical framework@2#.
The related theoretical methods are based on new analytical
and numerical tools. The analytical methods are inspired by
the mathematics of dynamical systems and the possible re-
duction of complex dynamics, close to instability points, to
much simpler forms, many aspects of which may be studied
analytically@3#. This reduction of the dynamics leads to am-
plitude equations of the Landau-Ginzburg type, which are
able to describe the formation, selection, and stability of the
convective patterns, quantitatively agreeing with several ex-
perimental observations.

In simple Newtonian fluids, the Rayleigh-Be´nard instabil-
ity, which occurs in a fluid layer heated from below, can only
lead, at the first instability threshold, to stationary patterns.
In this case, the main questions are thus related to the sym-
metry of the selected structures~rolls or hexagons!, to the
wavelength selection mechanisms, and to the transition be-
tween patterns of different symmetries@4,5#.

Of course, in more complex fluids, such as binary mix-
tures or liquid crystals, oscillatory and even more complex
spatiotemporal patterns may also appear near the first con-
vective instability @6,7#. The main properties of these pat-
terns have also been successfully described in the framework
of the amplitude equations formalism. Therefore, it appears
to be natural to apply this formalism to polymeric fluid con-
vection, where additional degrees of freedom can also lead to
a very rich dynamical behavior@8–10#.

In fact, the viscoelastic properties of such fluids appear in

the constitutive equation, which relates the stress and strain
rate tensors. Finding this relation, which should generalize
the linear dependence characteristic of Newtonian fluids, is
the main purpose of rheology. The simplest constitutive
equation capable of describing realistically the viscoelastic
properties of diluted polymers, such as Boyer fluids or water
solutions of polyacrylamides, is given by the so-called Old-
royd model@11#. In this model, the stress tensor is decom-
posed into both a polymeric contribution and a solvent con-
tribution. Furthermore, the binary mixture aspects of these
fluids are assumed to be irrelevant versus their viscoelastic
properties. In the weak shear regime, nonlinear stress-strain
rate dependences may be neglected, and the model may be
reduced to its linear approximation, known as the Jeffreys
model. This model contains three parameters: the static vis-
cosity, the stress relaxation time~which gives an estimate of
the time the stress tensor needs to react to a strain change in
the system, and is characteristic of a Maxwell fluid!, and the
retardation time, which results from the fact that the strain
dynamics is usually not purely relaxational. The relaxational
time is very short in normal fluids but increases strongly in
polymeric solutions. The ratioL of the retardation and relax-
ation times is an important rheological parameter, and it var-
ies from, 0 in the case of a Maxwell fluid, to 1 in the case of
a Newtonian fluid.

Linear stability analysis has been performed by various
authors to determine the onset of convection in such systems,
either with free-free or rigid-rigid boundary conditions. It has
been found that, besides the usual stationary convection, os-
cillatory states can also be obtained at onset@12–15#. Which
type of convection—stationary or oscillatory—appears first
is determined by the values of the rheological parameters. At
fixed Prandtl number and relaxation time, it is the stress re-
laxation timeG that fixes the relative position of the station-
ary and oscillatory instability thresholds.

This oscillatory instability can lead to traveling or stand-
ing waves, and the stability of these solutions has to be stud-
ied in a nonlinear analysis framework beyond the instability
threshold. The derivation of amplitude equations for oscillat-
ing viscoelastic convection in the weakly nonlinear regime
has been presented and analyzed elsewhere@16–21#. Hence,*Deceased.
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the aim of this paper is to review these previous results and
to perform the selection and stability analysis of the oscilla-
tory convective patterns, including their phase stability. It
will be shown that, while traveling waves are always found
unstable, standing waves may be stable in a wide parameter
range. In addition, the derivation of the phase dynamics of
the standing waves is presented, and the properties of the
defects, which may be expected as the result of oscillatory
instability associated time and space symmetry breakings,
are discussed.

The interest of this study is twofold. On the one hand, it is
shown that even small viscoelastic properties may strongly
modify the convective patterns. On the other hand, the sen-
sitivity of convective patterns to fluid properties could be
used to either determine the rheological parameters of a
given fluid or test the soundness of the type of constitutive
equation used to describe it.

The paper is organized as follows. In Sec. II, the basic
hydrodynamic equations for viscoelastic convection are pre-
sented. In Sec. III, the linear stability analysis of the conduc-
tion state is performed, and the conditions for the onset of
convection are discussed. In Sec. IV, the amplitude equations
for the convective patterns are derived and, in Sec. V, the
pattern selection and stability, including the phase stability,
are analyzed. Finally, conclusions and outlook are presented
in Sec. VI.

II. BASIC EQUATIONS AND CONSTITUTIVE EQUATIONS

A layer of incompressible viscoelastic fluid of depthd
and of infinite horizontal extent is considered. The fluid is
heated from below and remains at rest until a critical tem-
perature gradient is reached. In the Boussinesq approxima-
tion, the balance equations can be written as

“•v50, ~1!

r0@] tv1~v•“ !v#52“p1“•t1r0@12a~T2T0!g#,
~2!

@] tT1~v•“ !T#5k“2T, ~3!

wherev is the velocity field,p the pressure,t the extra stress
tensor,T the temperature,g the acceleration of gravity,a the
thermal expansion coefficient,T0 the temperature,r0 the ref-
erence density, andk the thermal diffusivity.

In a normal incompressible fluid, the extra stress tensor is
related to the strain tensor via the Newton lawt52hD,
whereD[v]5@~“•v!1~“•v!T#/2 is the strain rate tensor,h is
the viscosity and a superscriptT stands for transposition.
But, usually, a more general constitutive relation between
stress and strain ratet5t~D! is necessary to describe the
behavior of complex polymeric fluids. This relation is sub-
jected to symmetry restrictions. A type of constitutive rela-
tion that satisfies these restrictions and that may be further
justified by the kinetic theory of dumbbells are those pro-
posed by Oldroyd. These models, developed in the 1950s,
include particular cases that are widely used for different
kinds of polymeric solutions.

In the Oldroyd model, the constitutive equation is
written as

t1l1Dtt52h0@D1l2DtD#. ~4!

This equation contains three parameters:h0, the static~or
zero shear viscosity!; l1, the so-called relaxation time; and
l2, the retardation time~0<l2<l1!. In rheology, the so-
called frame-indifferent principle should be applied. It states
that the constitutive equations must be invariant under local
rigid rotations. Then, in order to satisfy the frame invariance,
objective time derivatives ought to be taken in the constitu-
tive equation. The symbolDt is denoted as an invariant
~frame-indifferent! time derivative, defined as

Dtt5] tt1~v•“ !t1t•W2W•t1a@D•t1t•D#, ~5!

whereW is the skew-symmetric part of the velocity gradient,
and a is a phenomenological parameter that can vary be-
tween21 and 1. The casea521 corresponds to the lower
convected Jeffreys model~Oldroyd B!, a50 to the so-called
corotational Jeffreys model, anda51 to the upper convected
Jeffreys model~Oldroyd A!.

The constitutive equation can be derived from a molecular
theory, in which the polymer molecules are considered as
noninteracting Hookean elastic dumbbells immersed in a
Newtonian solvent. The stress tensort can then be decom-
posed as

t5ts1tp , ~6!

wherets is the Newtonian solvent contribution

ts52msD, ~7!

and the polymeric contribution of a concentrated Maxwellian
convected model is given by the contribution of the solvent
and polymer viscositieshs andhp , respectively. Moreover,
the relaxation and retardation times are related by

l25
hs

hs1hp
l1 . ~8!

For weak shears, the linear approximation of the Oldroyd
model leads to the more simple Jeffreys constitutive equation
for a polymeric fluid

~11l1] t!t52h0~11l2] t!D. ~9!

The relaxation timel1 gives an idea of the time the stress
tensor needs to react to a strain change in the system. Usu-
ally, this time is very small in normal fluids~l1510212 s for
water! but can be sufficiently large in polymeric solutions.
However, the evolution of strain and stress often needs a
second time because the strain dynamics is not purely relax-
ational: there is an interrelation between stress and strain
relaxation. As an example, in the polymeric solution Boger
fluid ~B11!, constituted by water~1.6%!, syrup~98.3%!, and
polyacrylamide~0.1%!. The relaxation and retardation times
arel152.54 s, andl251.97 s@22#, respectively.

The quiescent solution of the system of equations~1!–~4!
is simply v50, t50, T5T12[(T12T2)/d]z, whereT1 and
T2 are the temperatures in the hot lower and cold upper
plates, respectively. This corresponds to a purely conductive
state. Now, as usual, the stability of this reference state is
studied via the evaluation of small perturbations or linear
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stability analysis. This analysis is performed by rescaling the
variables byd ~length!, d2/k ~time!, k/d ~velocity!, h0k/d

2

~stress tensor!, andDT5(T12T2) ~temperature!.
For the sake of simplicity, the analysis was limited to

two-dimensional motion. Therefore, we can use a stream
function c(x,z,t) that gives the velocity field
(vx ,vz)5(]zc,2]xc). Due to its symmetry properties, the
extra stress tensor has only three independent coefficients:
txx , tzz, tzx5txz . Instead of these individual components,
the following three scalar quantities are usually considered in
rheology: the traceU5txx1tzz, the normal stress difference
S5txx2tzz, and the in-plane shear stresstxz . In rescaled
variables, Eqs.~1!–~4! reduce to a system of evolution equa-
tions for the five scalar perturbationc, u, txz , S, andU.
~Here u denotes the nondimensional temperature perturba-
tion.!

The set of adimensional perturbation equations of the con-
duction state is written in its compact form

] tL rf5M rf1Nr~f,f!, ~10!

where the vectorf is simply f(x,z,t)5[c,u,txz ,S,U]
T,

while r represents the set of external parameters [R,P,G,L]

where R5r0aDTd3/h0k is the Rayleigh number,
P5h/r0k is the Prandtl number,G5l1k/d

2 is the nondi-
mensional stress relaxation time, andL5l2/l1 is the ratio
between retardation and relaxation times.L andM are de-
fined as

L5F “

2 0 0 0 0

0 1 0 0 0

2GLD2 0 G 0 0

24GL]xz
2 0 0 G 0

0 0 0 0 G

G , ~11!

M5F 0 2PR]x PD2 P]xz
2 0

2]x “

2 0 0 0

D2 0 21 0 0

4]xz
2 0 0 21 0

0 0 0 0 21

G , ~12!

whileN~f,f! is the nonlinear part of the dynamics and takes
the following form:

N~f,f!5F 2J~c,“2c!

2J~c,u!

GL$J~c,D2c!12~]xz
2 c!~“2c!%2G$J~c,txz!2 1

2 ~“2c!S1 1
2a~D2c!U%

GL$4J~c,]xz
2 c!22~“2c!~D2c!%1G$2~“2c!txz2J~c,S!12a~]xz

2 c!U%
22GLa$~2]xz

2 c!21~D2c!2%1G$2a~D2c!txz12a~]xz
2 c!S2J~c,U !%

G . ~13!

J( f ,g)5]zf ]xg2]xf ]zg denotes the Jacobian, andD2

5] zz
2 2] xx

2 , “25] xx
2 1] zz

2 .
This system of equations must be supplemented with ap-

propriate boundary conditions~bc!. The simplest choice is an
extension of the conducting, stress-free bc, that can be writ-
ten as

c5]z
2c50 at z50,1 ~14a!

and implies

txz5]zS5U50 at z50,1. ~14b!

The second~thermal! bc is equivalent to

u50. ~14c!

Although unrealistic, these bc have the advantage of provid-
ing the analytic resolution of the instability problems. Fur-
thermore, as shown in@17#, the use of realistic bc in the
linear stability analysis does not affect the results quantita-
tively, but it only leads to quantitative changes in the insta-
bility threshold.

III. LINEAR STABILITY

In considering small perturbations,f, the nonlinear term
in Eq. ~10!, may be neglected and, therefore, the correspond-

ing linear stability problem reduces to the equation

] tL rf5M rf, ~15!

with the bc Eq.~14!. Notice that in the linear approximation
the general Oldroyd model reduces to the Jeffreys model.
Looking at the linear operators,Lr andMr Eqs. ~11! and
~12!, it can be observed that the variableU is decoupled
from the other variables, and it has a purely decaying expo-
nential evolution. Hence, this variable is always linearly
stable and needs not to be considered in the linear stability
analysis. As usual, the solutions of the system~15! with the
bc ~14! may be expressed in the form of the normal modes,

f~x,z,t !5estc̃~x,z!, ~16!

where the vectorf has only four component vectors after the
elimination ofU and, therefore, the following expression can
be taken for the modes:

c̃~x,z!5F A sin~mkx!sin~npz!

B cos~mkx!sin~npz!

C sin~mkx!sin~npz!

D cos~mkx!cos~npz!

G , ~17!

whereA, B, C, andD are arbitrary constants, ands5s1 iv
is in general a complex quantity~s is the growth factor of a
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perturbation andv its frequency!. Introducing Eqs.~16! and
~17! in Eq. ~15!, the linear problem is reduced to the eigen-
value problem,

sLc̃~x,z!5M c̃~x,z!. ~18!

This equation has nontrivial solutions if the following con-
dition is satisfied:

det~M2sL!5sj1(
i50

j21

ais
i50, m,n>1. ~19!

It can be proved that the critical modes~as in the Rayleigh-
Bénard problem in a normal fluid! correspond to the case
m5n51. In general, form andn different from 1, the char-
acteristic equation~19! is quartic. However, in the particular
casem5n51, one root is always real negatives521/G
and, therefore, it corresponds to a stable eigenvector. Hence,
the characteristic Eq.~19! can be reduced to the cubic equa-
tion

P~s!5s31a2s
21a1s1a050, ~20!

where

a25
1

G
1q2~11LP!, ~21!

a15
Pk2

q2 S q6Lk2 1
q4

k2PG
~11P!2RD , ~22!

a05
Pk2

Gq2 S q6k22RD ~23!

andq25k21p2. The roots of the polynomial~20! give the
different bifurcations that may appear in this problem. We
will study them in some detail in the following subsections.

A. Stationary instability

This instability corresponds to a simple zero eigenvalue
(s50), which is obtained whena050 anda1.0. The first
condition gives the marginal stability curve

a050→Rs5
q6

k2
, ~24!

which is the same as in normal fluids, because viscoelastic
properties do not affect the stationary case. The minimum
value of this curve gives the instability threshold defined by
the critical Rayleigh and wave numbersRcs527p4/4 and
kcs5p/&, respectively.~The subscripts indicates a station-
ary solution, while subscriptc indicates critical values of the
corresponding instability.! The conditiona1.0 corresponds
to values ofG that respond to the relation

G,
11P21

q2~12L!
. ~25!

B. Oscillatory instability

Whena05a1a2 , anda1.0 is a pair of complex conju-
gated imaginary eigenvalues,s56 iv may be the solution to

the characteristic polynomial~20!, and this corresponds to an
oscillatory instability. The first condition defines the corre-
sponding marginal curve

a05a1a2→R05
q6L

k2
1

q2

k2G~11LP!

3S q2~2L1LP1P21!1
11P

GP D . ~26!

Examples of these curves can be seen in Refs.@14,15,17#. In
general, the critical valuesRco and kco ~the subscripto
stands for oscillatory instability! must be obtained numeri-
cally from Eq.~26!.

The second condition gives the oscillation frequencyv as
a function of the physical parameters

a1.0→v25
q2PG~12L!2~11P!

G2~11LP!
.0→G.

11P21

q2~12L!
.

~27!

Note that the oscillatory instability can appear before or after
the stationary instability, according to Eqs.~25! and ~27!.

This problem has been solved by different authors@11–
14#. The Rayleigh number for the oscillatory instability for
different nondimensional stress relaxation timesG is shown
as a function of the wave numberk ~Fig. 1!, for a diluted
polymer~P5100.0 andL50.75!. The dotted line represents
the stationary convection.

In Fig. 2, the critical Rayleigh numberRc , the critical
wave numberkc , and frequencyvc for the onset of oversta-
bility are plotted as functions of the logarithm of the nondi-
mensional stress relaxation timeG for both a diluted poly-
meric fluid ~P5100.0,L50.75! and a Maxwellian fluid~P
51000.0,L50.0!. The dashed lines indicate the stationary
instabilities.

IV. WEAKLY NONLINEAR ANALYSIS
AND AMPLITUDE EQUATIONS

A nonlinear analysis must be carried out in order to de-
termine the type of convective motion that could be devel-
oped beyond the instability threshold. Close to the instabil-
ity, this analysis can be made in the framework of a weakly
nonlinear analysis, which leads to the derivation of ampli-
tude equation of the Ginzburg-Landau type@3#. This ap-
proach basically assumes that the constant amplitudes of the
linear analysis are now space and time dependent above the
convection threshold. These amplitudes evolve on the space
and time scales of the unstable modes.

The solutions of the nonlinear problem in the neighbor-
hood of the convection threshold, i.e., for small values of the
reduced Rayleigh number«5(R2Rc)/Rc , and small ampli-
tudes, may be expressed as follows:~1! for stationary con-
vection,

f0~x,z,t !5Uos~z!@A exp~ ikcsx!1A* exp~2 ikcsx!#
~28a!

and ~2! for oscillatory convection,
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f0~x,z,t !5Uoo~z!$A exp@ i ~kcox1vct !#

1B exp@2 i ~kcox2vct !#%1c.c., ~28b!

where c.c. refers to the complex conjugate of the first term.
The perturbation vectorf0 gives rise to traveling waves
~TW! for vcÞ0 eitherA50 or B50, and stationary waves
~SW! vcÞ0 if uAu5uBu.

The purpose of this paper is to derive the evolution equa-
tion for the amplitudesA andB of Eq. ~28!, i.e., the ampli-
tude equations, and to compute both the nonlinear coeffi-
cients that determine the character of the bifurcation
~subcritical and supercritical! and the type of convective pat-
tern that may be obtained in the system.

A formal scheme for the derivation of the amplitude equa-
tions following Refs.@2# and @3# is described below. First,
we write Eq.~10! in its compact form,

Lf5N~f,f!, ~29a!

where

L5] tL2M . ~29b!

AmplitudesA andB vary on the slow scales

X5«1/2x, T15«1/2t, T5«t, ~30!

which are treated as independent variables. Hence,

A5A~X,T1 ,T,!, B5B~X,T1 ,T! ~31!

FIG. 1. The Rayleigh number for the oscillatory instability for
different nondimensional stress relaxation timesG is shown as a
function of the wave numberk, for a diluted polymer~P5100.0
andL50.75!. The dotted line represents the stationary convection.

FIG. 2. The critical Rayleigh numberRc , the critical wave num-
berkc , and frequencyvc for the onset of overstability are plotted as
functions of the logarithm of the nondimensional stress relaxation
time G for a diluted polymeric fluid~P5100.0,L50.75! and a
Maxwellian fluid ~P51000.0,L50.0!. The dashed lines indicate
the stationary instabilities. In all figures the logarithm is plotted to
the base 10.
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is obtained. We expand the solution of~29! with respect to
«1/2,

f~x,z,t,X,T1 ,T!5«1/2f01«f11«3/2f21••• , ~32!

where the arguments on the left-hand side are repeated on the
right-hand side, and substitute] t→] t1«1/2]T11«]T ,
]x→]x1«1/2]x , according to Eq. ~30! as well as
R5Rc(11«). Inserting all this into Eq.~29!,

L0f050, ~33!

L0f15N~f0 ,f0!2L1f0 , ~34!

L0f251N2~f0 ,f1!1N~f1 ,f0!2L1f12L2f2
~35!

yields at successive orders of«1/2.
The new operatorsL1,L2 and N1,N2 are complicated

functions of the new variables, but their explicit form may
remain unknown, as is shown below.L0 is the linear operator
L, defined in Eq.~11!, andR is replaced byRc ; then, Eq.
~33! is simply the linear part of Eq.~29! presenting the so-
lution ~28! already known, but where the amplitudes are now
functions of the slow variables@see Eq.~31!#. The right-hand
side ~rhs! of Eq. ~34! depends only onf0, which is already
calculated at order«1/2 and is found in the form of Eq.~28!.
Therefore, Eq.~34! is an inhomogeneous boundary-value
problem forf(x,z,t,X,T1 ,T) that can be solved by integra-
tion. After insertingf0 andf1 into Eq. ~35!, there is no real
need to solve this equation. Instead, by projecting the whole
equation ontof0

† , wheref0
† is the solution to the adjoint

equation of~33!, the rhs of Eq.~35! yields a solvability con-
dition. By now rescaling the old variablesx and t @and by
choosing a slightly different form of the expansion~32!,
where the factor«1/2 is included inf0#, these solvability
conditions are the amplitude equations forA andB.

A. Amplitude equation for the stationary instability

In many other problems of this type in the regime where
the first instability is the stationary one, the amplitude equa-
tion is

] tA5mA1a]x
2A2bA3, ~36!

where coefficientsm, a, andb are functions of parametersa,
P, G, L, kcs , andRcs . The bifurcation is always supercritical
for a561, sinceb is strictly real and positive. We found
that this is also true in the particular case of Maxwell fluid
~L50.0!, which is opposed to what some authors have found
that by using simple material derivatives instead of objective
material derivatives, supercritical and subcritical transitions
become separated by a tricritical point. In Fig. 3~a!, b is
represented as a function ofG for a different Maxwell fluid,
and upper and lower convective Oldroyd fluids (a561).

It must be emphasized that the value ofa (uau,0.825) is
crucial to the existence of subcritical bifurcation and poly-
critical points observed, for instance, on the corotational Jef-
freys model (a50) @Fig. 3~b!#. As a function ofG, coeffi-
cient b runs from positive values for viscoelastic fluids,
whose concentrations range from the Maxwell~L50.0! to a
high diluted polymeric fluid~L50.75!.

B. Amplitude equation for oscillatory convection

As in binary fluids, oscillatory convection is possible
when two time scales compete in the system. Since the in-
stability occurs at a finite wave number, traveling or standing
waves may be expected beyond threshold~left and right trav-
eling waves correspond toA50 or B50, and standing
waves correspond touAu5uBu!.

In applying the formalism presented in Eq.~28!, the non-
linear spatial behavior of the system may be described, in
this case, by the following coupled Ginzburg-Landau equa-
tions:

~] t1v]x!A5mA1~a r1 ia i !]x
2A2~b r1 ib i !uAu2A

2~g r1 ig i !uBu2A,
~37!

~] t2v]x!B5mB1~a r1 ia i !]x
2B2~b r1 ib i !uBu2B

2~g1 ig i !uAu2B,

where the sets of linear and nonlinear coefficients are
(v,m,a r ,a t) and (b r ,b i ,g r ,g i), respectively,v represents
the group velocity,m measures the deviation from the insta-
bility, a r is a diffusive term,a i represents dispersive effects,
b i andg i are nonlinear renormalization frequencies, andb r
andg r are nonlinear saturation terms.

The various nonlinear coefficientsb r andg r are presented
as functions of the nondimensional relaxation timeG for both
concentrated Maxwellian fluid~P51000.0,L50.0! and a

FIG. 3. The cubic coefficient in the stationary amplitudeb is
represented as a function ofG for both a concentrated Maxwellian
fluid ~P51000.0, L50.0! and a diluted polymeric fluid~P
51000.0,L50.75!: ~a! for upper and lower convective Oldroyd
fluids (a561); ~b! for corrotational Jeffreys model (a50).
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diluted polymeric fluid~P51000.0,L50.75! @Figs. 4~a! and
4~b!#. As coefficientb r is always positive, we could expect a
supercritical bifurcation towards TW. However, sinceg r ap-
pears to be negative for both fluids, the traveling waves
should be unstable, as is shown for upper and lower convec-
tive Oldroyd fluids (a561.0) in the next section.

Effectively, sinceb1 is positive, the uniform solutions of
Eq. ~37! may be either~1! of the traveling wave type,

uAu5Am

b r
expS b im

b r
t D , uBu50 for m.0 ~38!

or

uAu50, uBu5Am

b r
expS b im

b r
t D , ~39!

or ~2! of the standing wave type,

uAu5uBu5A m

b r1g r
expS b i1g i

b r1g r
mt D . ~40!

Evidently, this supercritical bifurcation towards SW im-
plies thatb r1g r.0, which is true for high concentrated
fluids, mainly whenG,64. ForG,64, the stability is pro-
vided by the fact thatg r is negative.

As for the standing waves, the phase stability determining
the complete stability range in the supercritical regime
should be studied. While the amplitude stability of the curves
is determined byg r,0, complete stability needs to be deter-
mined by a phase stability analysis.

The analysis for standing waves@Fig. 4~c!# shows that the
corresponding coefficientbSW is given by the addition ofg,
and the previous coefficientbTW is evaluated for the travel-
ing waves. The value ofbSW5g r1bTW is always negative
for diluted polymers. Nevertheless, it is positive for highly
concentrated fluids, whenG is lower than 64, a range where
there are supercritical solutions for standing waves. A tric-
ritical bifurcation is found at this point, and since for higher
values ofG the coefficient becomes negative, the bifurcations
are subcritical. It is necessary then to apply a fifth-order non-
linear analysis of the amplitude equation in order to describe
the evolution of the physical system.

The situation is completely different for corotational Jef-
freys model (a50). Results based on this model are shown
in Figs. 5~a!–5~c!. These results show that the convective
properties can change drastically, depending on the kind of
derivative used in the constitutive equation.

V. PATTERN SELECTION AND STABILITY

When the stationary instability is the first instability to
appear, in increasing the Rayleigh number, the system will
develop roll patterns corresponding to the steady solutions of
the amplitude equation~36!. These solutions form the family

AK5Am2ak2

b
ei @kx1w#, ~41!

wherew is an arbitrary phase.
These solutions exist in the range2Am/a<k<Am/a

~m>0!, but their stability range is reduced, as usual, by the
Ekhaus instability, and is thus given by

2A m

3a
<k<A m

3a
. ~42!

On the other hand, when the oscillatory instability is the
first to appear, the possible patterns will correspond to the
solutions of the amplitude equations~37!. These solutions
may be either of the traveling or the standing wave type. In
order to analyze the amplitude equations with standard meth-
ods, these equations could be written as

FIG. 4. The nonlinear coefficientsb r , g r , and bSW are pre-
sented as functions of the nondimensional relaxation timeG for
both a concentrated Maxwellian fluid~P51000.0,L50.0! and a
diluted polymeric fluid~P51000.0,L50.75! for upper and lower
convective Oldroyd fluids (a561).
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] tA1c]xA5mA1~11 ia!]x
2A2~11 ib!uAu2A

2~g1 id!uBu2A,
~43!

] tB2c]xB5mB1~11 ia!]x
2B2~11 ib!uBu2B

2~g1 id!uAu2B,

with a5a i /a r , b5b i /b r , g5g r /b r , d5g i /b r , and c
5v/Aa r . Equations~43! admit two families of traveling
wave solutions given by

Ak5Am2k2expi $k~x2ct!2bmt2~a2b!k2t%, Bk50,
~44!

or

Ak50, Bk5Am2k2expi $2k~x1ct!2bmt

2~a2b!k2t%. ~45!

The linear stability of such traveling waves versus stand-
ing waves may be easily analyzed. In fact, the linear evolu-
tion of the Fourier transform of the wave amplitudeB, where
subindexq represents the Fourier transform in the presence
of a traveling waveAk , is given by

~] t2 iqc!Bq5mBq2q2~11 ia!Bq2~g1 id!BquAku2.
~46!

Hence, the maximum linear growth rate of these modes,
corresponding to theq50 mode, is

Rev5m2g~m2k2!. ~47!

As a result, sinceg is found to be negative in this problem,
the traveling waves are always unstable versus the standing
waves.

The family of standing wave solutions of Eq.~43!, which
is given by

Ak5Q expi @VAt1kx#, ~48!

Bk5Q expi @VAt2kx#, ~49!

with

Q5Am2k2

11g
, ~50!

VA52kc2k2a2
~b1d!~m2k2!

~11g!
, ~51!

VB51kc2k2a2
~b1d!~m2k2!

~11g!
, ~52!

should be considered.
These standing waves appear via a supercritical bifurca-

tion at m50 whenbSW511g.0, which is true for highly
concentrated polymers, namely, whenG is lower than 64, as
may be seen in Fig. 4~c!. For diluted polymers,bSW is al-
ways negative, and an inverted bifurcation is expected. The
analysis of this situation would require going further, that is,
to the fifth-order nonlinearities in the amplitude equation.

The situation is completely different for the corotational
Jeffreys model~when a50!. The values of the parameters
for this model are shown in Fig. 5. In this case,bSW is
always positive for a diluted polymer and negative for a con-
centrated polymer.

These results clearly show that the nature of the bifurca-
tion and of the convective patterns can change drastically,
depending on the exact nature of the constitutive equation.
Therefore reliable experimental results would be highly de-
sirable in solving this problem in order to test the validity of
the constitutive relations used to describe the viscoelastic
properties of the fluids under consideration.

Due to the complexity of the computation required to ob-
tain the fifth-order terms of the amplitude equations, this
paper will be limited to the casebSW.0, where a supercriti-
cal bifurcation towards standing waves may be expected.

FIG. 5. The nonlinear coefficientsb r , g r , and bSW are pre-
sented as functions of the nondimensional relaxation timeG for
both a concentrated Maxwellian fluid~P51000.0,L50.0! and a
diluted polymeric fluid~P51000.0,L50.75! for the corotational
Jeffreys model (a50).
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Waves with wave numberqc1k may thus exist in the range
defined byk2,m. Sinceg is negative, the waves have stable
amplitudes. In effect, the linear evolution equations for am-
plitude perturbations~keeping the phase fixed in this way!
are given in the Fourier transform by

] tak52~2Q21k2!ak22gQ2bk , ~53!

] tbk522gQ2bk2~2Q21k2!bk , ~54!

uAku5Q1ak , uBku5Q1bk . ~55!

The fact that 11g.0 andg,0 ensures the decay of these
perturbations. Thus, the stability domain will finally be de-
termined by the phase stability. In order to perform this
analysis, the phase dynamics of these solutions will have to
be determined.

Due to the symmetry-breaking properties of the oscilla-
tory instability, the phases of the waves are marginal modes
evolving on the longest time and space scales of the system.
As a result, they govern the asymptotic evolution of the sys-
tem, and their dynamics may be obtained via the adiabatic
elimination of the wave amplitudes.

The following expressions,

A5~Q1a!expi $VAt1kx1wA%, ~56!

B5~Q1b!expi $VBt2kx1wB%, ~57!

will be substituted in the amplitude equations~43!. The am-
plitude perturbationsa and b may be adiabatically elimi-
nated through the standard procedure, and after some alge-
bra, we have the following phase equations for the Fourier
modes of the phaseswA andwB ,

] tS ~wA1wB!q
~wA2wB!q

D5L* S ~wA1wB!q
~wA2wB!q

D1N* , ~58!

where the linearL* and the nonlinearN* matrixes are

L*5S 2D1 2E1

2E2 2D2
D ~59!

and

N*5S 2F1$@]x~wA1wB!#q
21@]x~wA2wB!#q

2%2G1$]x~wA2wB!]x~wA1wB!%q
2G2$@]x~wA1wB!#q

21@]x~wA2wB!#q
2%2F2$]x~wA2wB!]x~wA1wB!%q

D . ~60!

The different terms of both matrices are provided in the fol-
lowing large expressions:

D65q21
Qq2B6~q!@aA7~q!22kc̄ #

A2~q!A1~q!1q2c̄ 2

2
2kq2@2kA6~q!1a c̄q2#

A2~q!A1~q!1q2c̄ 2 , ~61!

E65 i H qc̄2
QqB6~q!@2kA7~q!1a c̄q2#

A2~q!A1~q!1q2c̄ 2

2
2kq3@aA6~q!22kc̄ #

A2~q!A1~q!1q2c̄ 2 J , ~62!

F15
a

2
1

kc̄q2

A2~q!A1~q!1q2c̄ 22
QA2~q!B1~q!

A2~q!A1~q!1q2c̄ 2 ,

~63!

F25a1
2kc̄q2

A2~q!A1~q!1q2c̄ 22
QA1~q!B2~q!

A2~q!A1~q!1q2c̄ 2 ,

~64!

G15 i H 2kqA1~q!

A2~q!A1~q!1q2c̄ 22
c̄QqB1~q!

A2~q!A1~q!1q2c̄ 2 J ,
~65!

G15 i H kqA2~q!

A2~q!A1~q!1q2c̄ 22
c̄QqB2~q!

2@A2~q!A1~q!1q2c̄ 2# J ,
~66!

and

A6~q!52~16g!Q21q2,

B6~q!52~b6d!Q1
aq2

Q
, ~67!

c̄5c12ak.

The solutions of the linear part of the phase equation~55! are

S ~wA1wB!q
~wA2wB!q

D5C expiv6t, ~68!

wherev6 are the eigenvalues of the linear evaluation matrix
L* , and

v652
Tr

2
6FSTr

2 D 22SG1/2, ~69!

where Tr is the trace Tr5D11D2 andS the determinant
S5D1D22E1E2 .

By computing the trace as an expansion inq up to the
fourth order,
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Tr

2
5H 11

a~b2dg!

12g2 2
kc̄b

~12g2!Q22
2k2

~12g2!Q2 J q21H a2

2~12g2!Q22
a~b2dg!

~12g2!2Q2 1
2k2

~12g2!2Q4 1
ab

2~12g2!Q4

2
akc̄

~12g2!Q42
k2

~12g2!Q42
a c̄ 2~b2dg!

4~12g2!2Q4 1
kc̄b

~12g2!Q4 1
k2c̄ 2

2~12g2!2Q6 1
kc̄ 3b

4~12g2!2Q4 J q410~q6q8! ~70!

is obtained. In addition, the determinantS follows the relation

S5Aq21Bq41Cq6, ~71!

with the coefficients

A5 c̄ 21
4k2~b22d2!

12g2 2
4kc̄~b2dg!

12g2 , ~72!

B511
2a~b2dg!

12g2 2
4k2~b2dg!

~12g2!Q2 2
4kc̄b

~12g2!Q2 1
a2~b22d2!

12g2 2
2ak2

Q2 F b1d

~12g2!
1

b2d

~12g2!G2
2akc̄

~12g2!Q2 1
4k4

~12g2!Q4

1
k2c̄ 2~b22d2!

~12g2!Q4 2
4akc̄

~12g2!Q2 1
4kc̄~b2dg!

~12g2!2Q2 2
c̄ 2b

~12g2!Q2 1
2k2c̄ 2

~12g2!Q4 1
kc̄ 3~b2dg!

~12g2!2Q4 1
8ak2~b2dg!

~12g2!2Q2

2
4k2~b22d2!

~12g2!2Q2 1
2kc̄~b22d2!

~12g2!2Q2 2
2k2c̄ 2~b22d2!

~12g2!2Q4 ~73!

and

C5
a2

~12g2!Q22
2a~b2dg!

~12g2!2Q2 1
4k2

~12g2!2Q4 1
ab

~12g2!Q42
2akc̄

~12g2!Q42
2k2

~12g2!2Q42
a c̄ 2~b2dg!

2~12g2!2Q4 1
2kc̄b

~12g2!2Q6

1
kc̄ 3b

~12g2!2Q6 1
a3b

~12g2!Q22
2a2~b22d2!

~12g2!2Q2 1
4ak2

~12g2!Q4 F b1d

~11g!2
1

b2d

~11g!2G1
kc̄ 3b

2~12g2!2Q42
2a2kc̄~b2dg!

~12g2!2Q4

1
2ak2~b2dg!

~12g2!2Q4 2
a2c̄ 2~b22d2!

2~12g2!2Q4 1
2akc̄~b22d2!

~12g2!2Q4 1
ak2c̄ 2~12g2!

~12g2!3Q4 1
akc̄ 3~b22d2!

~12g2!3Q6 1
2a2k2

~12g2!Q62
4k4

~12g2!2Q6

2
2ak2~b2dg!

~12g2!Q6 1
ak2c̄ 2

2~12g2!Q6 F b1d

~11g!2
1

b2d

~11g!2G2
4k3c~b2dg!

2~12g2!2Q62
k4c̄ 2

~12g2!Q82
k3c̄ 3~b2dg!

~12g2!3Q8 2
a2kc̄~b1dg!

2~12g2!2Q4

1
2akc̄~b22d2!

~12g2!3Q4 2
akc̄~b22d2!

~12g2!2Q6 1
2ak2c̄ 2b

~12g2!2Q62
2k2c̄ 2~b22d2!

~12g2!2Q6 2
k2c̄ 4~b22d2!

4~12g2!3Q82
8ak2~b2dg!

~12g2!3Q4 1
2akc̄b

~12g2!2Q4

2
2ak2c̄ 2~b2dg!

~12g2!3Q6 2
2kc̄~b22d2!

~12g2!3Q4 1
k2c2~b22d2!

~12g2!3Q6 2
k2c̄ 2b

~12g2!2Q6 1
k2~b22d2!

~12g2!2Q4 1
kc̄~b22d2!

~12g2!2Q4 1
c̄ 2~b22d2!

4~12g2!2Q4

2
kc̄ 3~b22d2!

2~12g2!3Q6 . ~74!

From these expressions, it follows that

v652~aq21bq4!6 i H AAq1
B2a2

2AA
q3J 1O~q5!.

~75!

Hence, at the leading order inq, the real part ofv may be
expressed as

Rev65H 11
a~b2dg!

12g2 2
kc̄b

~12g2!Q22
2k2

~12g2!Q2 J q2,
~76!

and the standing wave solutions are phase stable for

11
a~b2dg!

12g2 2
kc̄b

~12g2!Q22
2k2

~12g2!Q2>0, ~77!

or

Q2>
kc̄b12k2

~12g2!1a~b2dg!
. ~78!

In substituting forQ25(m2k2)/(11g), and forc̄5c12ak
in the preceding equation, the following phase stability con-
dition is obtained:
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m>
k2@~11g!~312ab2g!1a~b2dg!#1kcb~11g!

~12g2!1a~b2dg!
.

~79!

Note that the stability analysis performed in this study is
relevant to extended perturbations. For localized perturba-
tions, the results presented here may be affected by the pres-
ence of large group velocities. In effect, in this case, the
convective and absolute instabilities of the various reference
states has to be considered, and the stability domains of the
wave patterns may be modified accordingly. From the values
of the kinetic coefficients of the corresponding Ginzburg-
Landau equations@20#, such modifications may be expected
to be irrelevant to diluted polymeric fluids, not to Maxwell-
ian fluids, as will be shown in a forthcoming publication
@23#.

VI. CONCLUSION

In this paper, we presented the derivation of the amplitude
equations of the convective patterns that arise in viscoelastic
fluids heated from below. Furthermore, we studied the pat-
tern selection and stability as a function of the viscoelastic
parameters in the case of Oldroyd-B constitutive equations.
At fixed Prandtl number and the ratio between retardation
and relaxation times, it may be observed that, on increasing
the stress relaxation time, stationary convection may be re-
placed with oscillatory convection. The analysis of the asso-
ciated Ginzburg-Landau equation shows that this oscillatory
convection should appear in the form of standing waves via
a supercritical bifurcation, for wide parameter ranges.

Also, we also derived the phase dynamics and determined

the phase stability of the standing waves. Due to the large
values of the group velocity, the decay of phase perturba-
tions is usually oscillatory. The phase dynamics appears in
the form of two coupled Kuramoto-Sivashinsky equations
for the individual phases of the underlying traveling waves.
Since we computed the coefficients of these equations at the
dominant orders, it would be easy to analyze, in a further
study, the defect behavior of the wave pattern.

Our results clearly show that the properties of the bifur-
cations and of the selected spatiotemporal patterns may
change drastically with the exact nature of the constitutive
equation used to describe the viscoelastic fluids. Hence, de-
spite the difficulties associated with the possibility of experi-
mental observation of overstable viscoelastic Rayleigh-
Bénard instabilities@24#, it would be highly desirable to
obtain precise experimental data with fluids presenting well-
defined viscoelastic properties. Comparisons with the theo-
retical analysis, such as the one presented here, would then
permit us to make a better fitting of the constitutive equa-
tions to real fluid properties.
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